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The interdependence of antiferromagnetism and superconductivity in the Bechgaard salts series of organic
conductors is examined in the light of the anomalous temperature dependence of the nuclear spin-lattice
relaxation rate. We apply the renormalization-group approach to the electron gas model to show that the
crossover from antiferromagnetism to superconductivity along with the anomalous nuclear relaxation rate of
the Bechgaard salts can be well described within a unified microscopic framework. For sizable nesting devia-
tions of the Fermi surface, scaling theory reveals how pairing correlations enhance short-range antiferromag-
netic correlations via magnetic Umklapp scattering over a large part of the metallic phase that precedes
superconductivity. These enhanced magnetic correlations are responsible for the Curie-Weiss behavior ob-
served in the NMR relaxation rate.

DOI: 10.1103/PhysRevB.80.085105 PACS number�s�: 74.20.Mn, 74.70.Kn, 76.60.Es

I. INTRODUCTION

In the attempt to understand how itinerant antiferromag-
netism can give rise to superconductivity in correlated elec-
tron systems, one faces the difficulty of linking the behavior
of spin fluctuations that can be extracted from experiments to
the mechanism of pairing that leads to superconductivity.
This work is about the quest of such a connection in the
Bechgaard salts ��TMTSF�2X� series of organic conductors.
We ground our analysis on scaling theory, which allows a
re-examination of the nuclear spin relaxation in the metallic
phase of these low-dimensional molecular systems.

The �TMTSF�2X compounds are quasi-one-dimensional
�quasi-1D� conductors known to exhibit a spin-density-wave
�SDW� state adjacent to superconductivity �SC� in their
phase diagram.1–3 This particular sequence of states is
achieved by the application of hydrostatic pressure or by
chemical means from anion X substitution. Among the host
of experimental tools used to study this pattern of phases, the
nuclear magnetic resonance �NMR� technique takes on par-
ticular importance due to its sensitivity to spin
correlations.4–9 In the metallic state of the SC side of the
phase diagram, NMR measurements have revealed the exis-
tence of an anomalous enhancement of the nuclear spin-
lattice relaxation rate T1

−1. The enhancement was first ob-
served for the ambient pressure superconductor
�TMTSF�2ClO4,4,10,11 and subsequently found by different
groups to be a common characteristic of the series in the
metallic state above the critical pressure for
superconductivity.5,7–9 The T1

−1 temperature profile shows
pronounced deviations from the Korringa law, T1

−1�T, which
is normally expected in conventional metals. These devia-
tions were originally ascribed to the presence of short-range
antiferromagnetic spin fluctuations extending in temperature
dozens of times the superconducting Tc�1 K in the metallic
state.4 The amplitude of the deviations are strongly pressure
dependent and seemingly tied to the amplitude of Tc,

3,5,12

suggesting that antiferromagnetism and Cooper pairing are
closely related.

It was initially proposed that one-dimensional short-range
antiferromagnetic correlations are a key determinant in the
enhancement of T1

−1. This low-dimensional response was
shown to ultimately crossover into a higher dimensional me-
tallic phase around 10 K, below which a Korringa law was
predicted to be recovered.4 However, the dimensional as-
pects of such an interpretation run into difficulties when one
compares the temperature scale for the crossover to the range
of values otherwise extracted from experiments,13–15 and
which would rather place this scale an order of magnitude
higher in temperature. An additional defect comes from an
important observation made by Brown et al.,3 concerning the
temperature profile of the relaxation. Based on the analysis
of recent measurements,3,8,9 it was shown that the Korringa
behavior is in effect not recovered down to the lowest tem-
perature preceding superconductivity. Deviations actually
persist indicating that staggered spin fluctuations, though
nonsingular, keep growing as the temperature is lowered,
imposing a Curie-Weiss �CW� temperature dependence for
the relaxation rate. Noticeably enough, however, the charac-
teristics of the CW response persists down to Tc and the
amplitude of the anomaly as a whole evolves rapidly under
pressure like the temperature scale for the onset of supercon-
ductivity. The question then arises if, in accordance with the
customary view, a sharp distinction can be drawn between
both phenomena, or if they are in effect dynamically linked,
a possibility that would not only connect magnetism to su-
perconductivity but also involve superconductive pairing in
the enhancement of spin correlations.

It is from the latter perspective that we shall reconsider
the T1

−1 problem for the Bechgaard salts.16 This will be
achieved with the help of the weak coupling
renormalization-group �RG� theory.17,18 Recent develop-
ments along these lines have demonstrated how the one-loop
RG can take into account density wave and Cooper pairings
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on equal footing in correlated quasi-1D metals. In the frame-
work of the repulsive quasi-1D electron gas model, it was
found that unconventional singlet “d-wave” �SCd� or in cer-
tain conditions triplet “f-wave” superconductivity can be dy-
namically generated next to a SDW state as alterations of the
nesting of the Fermi surface—which mimic pressure effect—
are made sufficiently large. From a similar approach to be
brought forward here, a CW-type behavior for the spin-
fluctuation response is shown to take place over a large tem-
perature interval above Tc within a SCd scenario. It origi-
nates from magnetic Umklapp scattering whose amplitude is
apparently strengthened by constructive interference with su-
perconductive pairing. The amplitude of spin correlations
rapidly decline under “pressure,” in line with the decrease in
Tc. When transposed into a T1

−1 calculation, the RG results
can give a satisfactory account of the key features shown by
the nuclear relaxation rate, establishing a direct connexion
between spin fluctuations and the mechanism of supercon-
ductivity in the Bechgaard salts.

In Sec. II we introduce the quasi-1D electron-gas model
in the presence of weak Umklapp scattering and alteration of
nesting. We review the results of the three-variables RG
method obtained at the one-loop level within a SDW-SCd
scenario. The temperature profile of the antiferromagnetic
and superconducting responses are given and scrutinized as a
function of nesting deviations of the Fermi surface. The tem-
perature scales are extracted and used to construct the phase
diagram of the model. In Sec. III, the explicit form for T1

−1 is
calculated from the RG results for both the antiferromagnetic
and uniform components of spin fluctuations. In Sec. IV we
discuss the results and conclude.

II. ITINERANT ANTIFERROMAGNETISM
AND SUPERCONDUCTIVITY: RENORMALIZATION-

GROUP RESULTS

We consider the electron-gas model18–21 whose bare
Hamiltonian for a square lattice of N��N� chains of length
L is given by

H = �
p,k,�

Ep�k�cp,k,�
† cp,k,�

+
1

LN�
2 �

�k,��
�g1c+,k1�,�1

† c−,k2�,�2

† c+,k2,�2
c−,k1,�1

+ g2c+,k1�,�1

† c−,k2�,�2

† c−,k2,�2
c+,k1,�1

+ g3�c+,k1�,�1

† c+,k2�,�2

† c−,k2,�2
c−,k1,�1

+ H.c.���k1+k2=k1�+k2���G�, �1�

where the operator cp,k,�
† �cp,k,�� creates �destroys� a right �p

=+� and left �p=−� moving electrons of wave vector k
= �k ,kb ,kc� and spin �. The free part is modeled by the one-
electron energy spectrum

Ep�k� = vF�pk − kF� − 2t�b cos kb − 2t�b� cos 2kb

− 2t�c cos kc, �2�

where vF and kF are the longitudinal Fermi velocity and
wave vector; t�b and t�c are the nearest-neighbor hopping
integrals in the two perpendicular directions. The small
transverse second nearest-neighbor hopping t�b� � t�b para-
materizes the alteration of nesting of the open Fermi surface,
which simulates the most important effect of pressure in our
model. The quasi-1D anisotropy of the spectrum is EF

	15t�b	450t�c, where EF=vFkF	3000 K is the longitu-
dinal Fermi energy congruent with the range found in the
Bechgaard salts;22–24 EF is half the bandwidth E0=2EF in the
model. The interacting part of the Hamiltonian is described
by the bare backward �g1� and forward �g2� scattering am-
plitudes between right and left moving electrons. In terms of
the extended Hubbard model parameters, g1=U−2V and g2

=U+2V, where U and V are the on-site and nearest-neighbor
repulsions. The half-filling character of the band—due to the
small dimerization of the chains—gives rise to Umklapp
scattering of bare amplitude g3,20 for which momentum con-
servation is satisfied modulo the longitudinal reciprocal lat-
tice vector G= �4kF ,0 ,0�.

In the repulsive sector, the couplings satisfy g1−2g2�g3,
a condition that promotes antiferromagnetic spin fluctuations
in the presence of nesting. In spite of a variety of possibili-
ties for the couplings that would be generic for the phenom-
ena we want to discuss, one can call upon experiments and
band calculations to delimit their range and make a choice
for the amplitude of normalized couplings g̃i
gi /�vF for
the calculations that will follow. We first note that—half-

filling—Umklapp term g̃3�
	D

EF
g̃1 is proportional to a small

dimerization gap 	D due to the modulation of the electron
transfer integral along the stacks.20,25,26 For �TMTSF�2X
compounds, the modulation is relatively small and one finds
	D

EF

0.1.22–24 The backscattering coupling g̃1 governs spin

excitations and is involved in the enhancement of static spin
susceptibility.27,28 Experiments in the Bechgaard salts indi-
cate that this enhancement is around 20% the noninteracting
band value at low temperature.7,29,30 This is compatible with
the use of a bare backscattering amplitude in the interval
g̃1	0.3, . . . ,0.5, giving in turn the range g̃3
	0.02, . . . ,0.04 for Umklapp. As for the forward scattering,
its bare amplitude can be adjusted in order for the calculated
temperature scale for SDW ordering to fall in the range of
observed values 10–20 K at moderate nesting frustration.
This leads to g̃2	0.5, . . . ,0.7. Though nonexhaustive, this
range of parameters is found to be generic of the interdepen-
dence between magnetism and superconductivity. The RG
calculations, that follow, have been carried out for g̃1=0.32,
g̃2=0.64, and g̃3=0.02.

The RG method consists of integrating successively the
degrees of freedom from the high energy cutoff EF down to
the energy 1

2E0���= 1
2E0e−� above and below the Fermi sheets

at step �. At the one-loop level, the corrections to the ampli-
tudes g̃i as a function of � come from the electron-electron
�Cooper� and electron-hole �Peierls� scattering channels.
Both interfere and generate momentum dependence for the
scattering amplitudes as E0���=E0e−� is reduced with in-
creasing �. Here the influence on the RG flow of the smallest
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transverse hopping integral, t�c, is negligible and has been
ignored. In the three momentum variables scheme of the
renormalization-group adopted here,18 each sheet of the
Fermi surface is divided into 32 pieces or patches whose
location defines a particular transverse momentum kb in the b
direction. Only the kb dependence is retained for the cou-
plings, which becomes gi→gi�kb1� ,kb2� ;kb2 ,kb1�. The explicit
form of the corresponding flow equations has been given
previously �Eqs. Eqs. �10�–�12� of Ref. 18� and these need
not to be repeated here.

Following their integration up to �→�, the presence of a
singularity in the scattering amplitudes signals an instability
of the normal state at a “critical” temperature T�.31 To see
what kind of order it refers to, we compute the susceptibili-
ties. For the intrachain interactions given above, a singularity
has been shown to occur either in the static �=SDW or the
SCd susceptibility �.17,18 In the RG framework, these are
expressed as a loop integration

��q,�� =
1

�vF
�

0

̃�
0 �q,��

f��kb�z�
2 �kb��d� , �3�

where ¯ � is an average over kb, f��kb�=1�cos kb� is a form
factor for the �=SDW �SCd� order parameters; z��kb� is the
scaling factor associated to the response function of the
channel � and which will be defined shortly. In the T1

−1

analysis given in Sec. III A, the dependence on the �real�
frequency � and the three-dimensional wave vector q
= �q ,qb ,qc� of SDW is needed. It can be introduced through
the upper bound of the loop integration, which will be taken
as the normalized free-electron dynamic susceptibility ̃�

0

=�vF�
0 of the SDW channel

̃SDW
0 �q0 + q,�� = ln

EF

T
+ ��1

2
�

−
1

8�2�
−�

+� �
−�

+�

dkbdkc���1

2

+ i
�P�k�,q,��

4�T
� + c.c.� . �4�

̃SDW
0 has been expressed in terms of the deviations q to the

best nesting vector q0= �2kF ,� ,��. Here ��x� is the di-
gamma function and

�P�k�,q,�� 	 vFq + �2t�b sin kb�qb − 4t�b� cos 2kb

+ �2t�c sin kc�sin qc − � . �5�

As for SCd in the Cooper channel, it will be evaluated in
the uniform q=0 and static �=0 limit, where ̃SCd

0

=ln EF /T.
Following Ref. 18, the flow equation for the static SDW

vertex part at �2kF ,�� is given by

��zSDW�kb� =
1

2�
�

−�

+�

dk̄bBP�k̄b�zSDW�k̄b� � �g2�k̄b

+ �,kb, k̄b,kb + �� + g3�k̄b,kb, k̄b + �,kb + ��� ,

�6�

which is governed by the combination of couplings g2+g3.
For the static SCd, one has fSCd�kb�=cos kb for the form
factor and the vertex part at zero pair momentum obeys to

��zSCd�kb� = −
1

2�
�

−�

+�

dk̄bBC�k̄b�zSCd�k̄b� � �g1�k̄b,− k̄b,kb,

− kb� + g2�k̄b,− k̄b,− kb,kb�� , �7�

which is governed by the combination −g1−g2. The above
expressions depend on the � derivative of the Peierls and
Cooper loops which read

BP/C�k̄b� = �
�=�1

���E0���/2 + �AP/C�k̄b�� − E0���/2�

�
1

2
�tanh

E0���/2 + �AP/C�k̄b�
2T

+ tanh
E0���

4T
�

�
E0���/2

E0��� + �AP/C�k̄b�
, �8�

where AP�k̄b�=4t�b� cos 2kb, AC=0, and ��x� is the step func-
tion with the definition ��0�
 1

2 .
The RG results at the one-loop level for the temperature

dependence of the normalized ̃SDW and ̃SCd�̃�
�vF��
are given in Fig. 1 for different values of the nesting frustra-
tion parameter t�b� . At small t�b� , ̃SDW diverges signaling an
instability toward the formation of a SDW state at the tem-
perature TSDW. This scale decreases as t�b� is raised and at the
approach of the threshold t�b�� 	25.6 K �for the set of param-
eters used�, it undergoes a rapid drop. However, TSDW does
not go to zero, but is replaced by another scale Tc at which
̃SCd is singular and an instability of the metallic state against
d-wave superconductivity takes place. This yields a maxi-
mum in Tc when TSDW is minimum, namely, where the cou-
pling strength, mediated by spin fluctuations, is maximum.
When t�b� is further raised, Tc decreases monotonically. The
overall variation in the temperature scale for the metallic
state instability of Fig. 1�b� captures fairly well the charac-
teristic variation in the critical temperature found in com-
pounds such as �TMTSF�2X under pressure.1–3

The temperature dependence of ̃SDW is of particular in-
terest. To begin with the region well below t�b�� , on the SDW
side, namely, far from the boundary between SCd and SDW,
the plot of ̃SDW

−1 in Fig. 2 shows a linear behavior in tem-
perature down to TSDW, which is characteristic of a �T
−TSDW�−� singularity for ̃SDW with the classical exponent
�=1. As the boundary is approached, however, this behavior
for ̃SDW

−1 does not extend down to the critical point, but
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evolves toward another regime as deterioration of nesting
conditions becomes more perceptible and TSDW decreases
rapidly. By inspection, the latter regime for ̃SDW

−1 is also
found to be linear sufficiently close to TSDW, but with a
smaller slope. The temperature interval above TSDW, where it
takes place, increases as t�b� grows. This regime, which we
parameterize by a CW form ̃SDW

−1 =C�T+��, has a negative
scale � that coincides with TSDW at t�b� 
 t�b�� .

As one reaches t�b� = t�b�� where the system is supercon-
ducting, �=0 and ̃SDW�1 /T. If superconductivity was ab-
sent the system would be then quantum critical in the SDW
channel with a singular antiferromagnetic correlation length
�a,b�T−�, of exponent �=1 /2 in the ab plane. As for the
dynamical exponent z, the results of Sec. III give z=2. The
CW form carries on in the superconducting sector where �
becomes positive and grows with t�b� . Since ̃�T→0�
→1 /C�, the amplitude of � is thus connected to the size of
spin fluctuations in the low-temperature limit, which

decreases rapidly with t�b� . It follows that ̃SDW, though no
longer singular above t�b�� , is still temperature dependent: de-
spite altered nesting conditions and scaling toward the for-
mation of a singlet superconducting ground state, antiferro-
magnetic correlations continue to grow down to Tc. The CW
behavior extends several times Tc in the metallic state.

The existence of a CW behavior above t�b�� is intimately
linked to the presence of magnetic Umklapp scattering �g3�
in the model; without this coupling, ̃SDW is essentially flat at
low temperature. This is confirmed by putting g3=0 and car-
rying out the calculation with the remaining coupling con-
stants. Most surprisingly, however, strongly reduced nesting
of the Fermi surface alone plays little role in the enhance-
ment of Umklapp. The augmentation turns out to be a con-
sequence of Cooper SCd pairing that reinforces spin fluctua-
tions in the metallic state. This can be easily checked by
setting BC=0, which removes all the Cooper pairing terms
from the flow equations of the coupling constants. In this
superconductive pairingfree scheme, which is equivalent to a
ladder diagrammatic �mean-field� summation in the density-
wave pairing channel alone, the CW behavior is negligible
for t�b� � t�b�� .

Interestingly enough, Umklapp scattering is coupled to g1

and g2, which both flow to strong coupling at the approach of
the superconductive fixed point at Tc. At variance with ordi-
nary s-wave superconductivity,32 these scattering amplitudes
are momentum dependent in a SCd scenario yielding an
overall positive sign for their coupling with Umklapp. It fol-
lows that the singular growth of SCd pairing at low tempera-
ture �Fig. 1�a�� interferes positively with Umklapp expanding
the temperature range where this coupling and, in turn, spin
fluctuations increase. It is this self-consistency between the
two pairing channels that is responsible for the CW law for
the staggered magnetic susceptibility down to Tc. It is worth
stressing that the reinforcement of the SDW channel is not
limited to the SC sector, but is also manifest for t�b� 
 t�b�� ,
where the CW behavior, with a negative �, is indicative of a
SDW instability driven by Cooper pairing.
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FIG. 2. �Color online� Calculated inverse normalized SDW sus-
ceptibility as a function of temperature for different t�b� . The con-
tinuous lines correspond to the Curie-Weiss regime.
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FIG. 1. �Color online� �a� Temperature variation in the normal-
ized static susceptibility ̃� in the SDW and SCd channels at vari-
ous t�b� on either side of the threshold value t�b�� ; �b� RG phase
diagram of the quasi-1D electron-gas model �see text�. The dashed
line stands as the CW scale � in the superconducting sector. The
dotted line defines the temperature domain of the CW behavior.
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III. NUCLEAR SPIN-LATTICE RELAXATION RATE

A. Theoretical prediction for the staggered and uniform
contributions to nuclear relaxation

We now turn to the derivation of the nuclear relaxation
rate in the RG scheme. The T1

−1 calculation starts from the
Moriya expression33

T1
−1 = T� �Aq�2

��q,��
�

d3q , �9�

which relates T1
−1 to the imaginary part of the retarded spin

susceptibility �. Here Aq is proportional to the hyperfine
matrix element. The integral over all q indicates that T1

−1 is
sensitive to staggered and uniform electronic spin correla-
tions with, respectively, large q�q0 and small parallel q
�0. We then consider the following decomposition:

T1
−1 = T��

q�0
+ �

q�q0

��Aq�2
��q,��

�
d3q, 
 T1

−1�q � 0�

+ T1
−1�q0� . �10�

Let us first examine the staggered component, T1
−1�q0�. Using

Eqs. �3� and �4�, the expression of ��q+q0 ,�� at small q
and � is given by

Im SDW�q + q0,�� =
SDW�q0���

�1 + �a
2q2 + �b

2qb
2 + �c

2�sin qc�2�2 + �2�2 .

�11�

From the results of the Appendix, �i
2=�0,i

2 zSDW
2 �kb�� / ̃SDW is

the squared of the correlation length along i=a, b, and c
directions; �0,a�vF /T0 and �0,b,c� t�b,c /T0 are the corre-
sponding coherence lengths evaluated at the SDW
temperature T0	12 K obtained at small t�b� ; �
=�0zSDW

2 �kb�� / ̃SDW is the relaxation time for SDW fluctua-
tions and �0�1 /T0 is a characteristic short-range time scale.
The integration over q is carried out in Appendix and yields

T1
−1�q0� = 2�3�Aq0

�2�N�EF��2vF�0/��0,a�0,b�

� T̃SDW� 1

�1 + �c
2

−
1

��1 + r��1 + r + �c
2�
� ,

�12�

where r	1.114zSDW
2 �kb�� / ̃SDW and N�EF�=1 /�vF corre-

sponds to the density of states at the Fermi level. The en-
hancement of the staggered component as the temperature is
lowered is thus connected to the static SDW response which
can be obtained by the RG method.

We next consider the uniform component of the relaxation
rate which is connected to the imaginary part of the dynamic
spin susceptibility at small � and q. In this limit, �q ,�� has
been shown to be nonsingularly enhanced by interactions at
low temperature.7,27,28 Within the random-phase approxima-
tion �RPA�, the expression of the imaginary part reads

��q,����,q→0 = − �2 1

4�3�
p
� dkdkbdkc�n�Ep�k + q��

− n�Ep�k������ − Ep�k + q� + Ep�k�� ,

�13�

where n�x� is the Fermi distribution. The uniform contribu-
tion for the imaginary part is enhanced from electron-
electron interaction by the factor � �see Appendix�. From
previous measurements of the static and uniform spin
susceptibility,29,30 its enhancement is about 20% in the low-
temperature domain so that the factor can be fixed to �
	1.2 considered as temperature independent in the range of
interest.34 Substituting in Eq. �10�, the remaining integrals
are carried out in the Appendix and lead to the “Korringa”
component

T1
−1�q � 0� = ��A0�2�N�EF��2�2T . �14�

While the uniform contribution is nonsingular, its amplitude
is known to become ultimately larger than the staggered
component at high enough temperature.27

B. Results and relation to experiments

To compare the sum of Eqs. �12� and �14�, as the calcu-
lated T1

−1 �Fig. 3�, with the experimental findings for 77Se T1
−1

in �TMTSF�2PF6 and �TMTSF�2ClO4 �Refs. 4 and 5�, we
adjust the two unknown constants �A0� and �Aq0

� so that the
amplitude of T1

−1 falls in the range of the observed values
�Fig. 4�. Since in the high-temperature region, the nuclear
relaxation rate is dominated by the uniform contribution,7,35

�A0� is adjusted to make T1
−1�q�0� matching with the mea-

sured T1
−1 values at 50 K. The other constant �Aq0

� for the
staggered part is tuned such that T1

−1 is congruent with the
measured value at 20 K. A ratio of �Aq0

� / �A0��10−2 is thus
found for the hyperfine matrix elements.36 The total expres-
sion of T1

−1 is then plotted in Fig. 3 for various values of the
nesting frustration parameter t�b� , namely, below and above
the threshold for superconductivity in the calculated phase
diagram of Fig. 1�b�.
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FIG. 3. �Color online� Calculated temperature profile of nuclear
relaxation rate as a function of temperature for t�b� below and above
the threshold value t�b�� .
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In the SDW domain for t�b� � t�b�� , the relaxation rate Eq.
�12� behaves as T1

−1�T̃SDW /�1+�c
2 at large r, namely, close

to TSDW, where it is dominated by the staggered contribution.
The latter then develops a three-dimensional singularity of
the form T−1��T−TSDW�−�, with �=1 /2 when �c becomes
large as T→TSDW. The power-law exponent agrees with the
one of mean-field theory in three dimensions.27 This has
been shown long ago to agree with the �TMTSF�2PF6 data of
Fig. 4.5,7 As one moves away from TSDW in temperature, �c
becomes smaller and the system evolves toward a two-
dimensional �2D� behavior where T−1�T̃SDW, correspond-
ing to �=1.

Now if one moves along the t�b� scale, by approaching t�b��

from below, one enters into a transitional regime where TSDW
is relatively small; �c then becomes large and three-
dimensional order, with �=1 /2, develops only in very close
proximity to the critical point. For t�b� � t�b�� on the SCd side,
T1

−1 is no longer singular but shows a pronounced anomaly
due to short-range spin fluctuations. These extend deeply in
the normal state up to 20 K or so, above which the uniform

component of the relaxation takes over and T1
−1�T. To the

anomaly of T1
−1 found down to about 10 K �Fig. 3� corre-

sponds a distinct region of increase in SDW �Fig. 1�a�� due to
the growth of antiferromagnetic correlations close to SDW
ordering. T1

−1 passes through maximum near 10 K, whose
amplitude, and to a lesser extend its location, is t�b� depen-
dent; T1

−1 then finally starts to go down at lower temperature
until one reaches Tc.

The overall structure of the calculated T1
−1 anomaly com-

pares fairly well with the data of Creuzet et al.,5 �Fig. 4� and
Brown et al.,3 on �TMTSF�2PF6 above the critical pressure
Pc for superconductivity and on �TMTSF�2ClO4 at ambient
pressure ��Pc, inset of Fig. 4�.

If one looks more closely at the decrease in the calculated
T1

−1 below 10 K in Fig. 3, it is found that it deviates from a
linear Korringa law as a consequence of the growth of spin
fluctuations, responsible for the CW behavior for SDW in
this temperature range �Fig. 1�. To see how these fluctuations
mark the relaxation rate, it is instructive to look at the tem-
perature dependence of T1T shown in Fig. 5. In the left panel
of this figure, the three different regimes of the calculated
relaxation rate can be identified. In the high-temperature re-
gime T1T tends to level off, dominated by the uniform com-
ponent Eq. �14�. At lower temperature where T1T is con-
trolled by the staggered component, two 2D linear regimes,
governed by �a,b, can be singled out and related to those
found previously for 1 / ̃SDW in Fig. 2. Indeed, in the inter-
mediate temperature range, between 20 and 10K or so, T1T is
weakly affected by nesting alterations and evolves with a
steep slope that would extrapolate to a finite critical tempera-
ture. However, approaching 10 K, these alterations become
more perceptible and the slope of T1T is reduced and enters
in the low-temperature CW regime of the form T1T=C�T
+��. Following the example of 1 / ̃SDW when t�b� 
 t�b�� , �
=−TSDW, and T1T is found to be linear, except in the very
close vicinity of TSDW, where �c becomes large. At t�b�� , �
vanishes and finally grows positively for t�b� � t�b�� as Tc de-
creases. The slope C diminishes as t�b� grows, whereas the
product C�, corresponding to the extrapolated zero-
temperature intercept of T1T, increases.

From the NMR work of Creuzet et al.,4,10 �inset of Fig. 4�
and from of Shinagawa et al.,9 �Fig. 5, lower panel on the
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FIG. 4. �Color online� 77Se T1
−1 vs temperature measured in

�TMTSF�2PF6 in the SDW regime at P=1 bar �triangles�, 5.5 kbar
�squares� and in SC regime at P=8 kbar �crosses� and 11 kbar
�circles� �Ref. 5�. Inset: 77Se T1

−1 vs T in �TMTSF�2ClO4 at P
=1 bar �Refs. 4 and 10�.
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FIG. 5. �Color online� Left: Calculated tem-
perature profile of T1T for different values of t�b�
below and above the threshold t�b�� . Upper right:
77Se T1T data for �TMTSF�2PF6 at 9.5 kbar �red
�gray� circles, after Wu et al., Ref. 8�, 8 kbar, and
11 kbar �green �gray� squares after Creuzet et al.,
Ref. 5�; the continuous lines are theoretical fits
�see text�. Lower right: 77Se T1T data for
�TMTSF�2ClO4 at ambient pressure �blue �black�
circles, after Creuzet et al., Ref. 4, red �gray�
circles, after Shinagawa et al., Ref. 9�. The con-
tinuous line is a theoretical fit �see text�.
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right� on �TMTSF�2ClO4 at ambient pressure, the three re-
gimes of T1T can be discerned in the data. On the same panel
the continuous line corresponds to a fit using the sum of Eqs.
�12� and �14�, where �Aq0

�	18.5 �sec−1� and �Aq0
� / �A0�

	0.7�10−2, with a CW regime that corresponds to �
	1.8 K. In the upper panel of the same figure, the T1T data
of Wu et al.8 and Creuzet et al.,5 �Fig. 4� for �TMTSF�2PF6
at P	10 kbar are shown. The fit �blue �black� curve� is
obtained for �Aq0

�	12.8 �sec−1� and �Aq0
� / �A0�	0.65

�10−2 for which �	11.3 K. For the data on the same com-
pound at 8 kbar, we have �Aq0

�	18 �sec−1� and �Aq0
� / �A0�

	0.9�10−2, with �	1.7 K. The three temperature regimes
are revealed from the data at small �. However, as pressure
increases, in �TMTSF�2PF6, for example, the temperature in-
terval over which the CW takes place experimentally, appar-
ently increases in size. This pressure effect is not captured by
the present calculations for which the CW temperature inter-
val is essentially constant as a function of t�b� �Fig. 1�b��. As
for the rapid increase in � as the ratio Tc /Tc�t�b�� � falls off in
Fig. 1�b�, it is found to be in fair agreement with the experi-
mental findings in �TMTSF�2PF6, at least up to moderate
pressure where data are available.3,5

IV. DISCUSSION AND CONCLUSION

The explanation put forward for the enhancement of spin
fluctuations in the metallic state of the �TMTSF�2X com-
pounds modifies an earlier scheme of interpretation proposed
long ago, in which an effective—strongly renormalized—
scale for interchain hopping played the dominant part in the
temperature profile of the enhancement that was considered
one dimensional in character. In the quasi-one-dimensional
view adopted here, the coherent wrapping of the
open Fermi surface takes place in the temperature domain
�t�b��100 K�, that is far above the range where the
anomalous features of the relaxation rate are found. It is
rather the small parameter t�b� for nesting deviations of the
whole Fermi surface that acts as the critical parameter and
triggers the modification of the relaxation rate in tempera-
ture. For repulsive couplings, the increase in t�b� alters, as
expected, the stability of the SDW fixed point, simulating the
effect of pressure.37,38 At some threshold value t�b�� , the SDW
fixed point is unstable. However, because of a finite mixing
between the weakened density wave and unaltered Cooper
pairing singularities in the scattering amplitudes, the electron
system is not a Fermi liquid, but is rather characterized by
superconducting order, which takes place in the SCd channel
for intrachain repulsive interactions.

We have first seen how this crossover between fixed
points operates as a function of temperature above t�b�� for the
SDW response function. At high temperature, thermal broad-
ening of the Fermi surface makes nesting deviations less per-
ceptible and the electron system is still attracted by the SDW
primary fixed point. As the temperature decreases and the
fine details of the Fermi surface in the ab plane become
progressively coherent, the singularity of the SDW response
is suppressed. This coincides with the emergence of a sec-
ondary SCd fixed point, whose influence stretches in tem-
perature about ten times the maximum Tc value reached at

t�b�� . Throughout the flow toward Tc, SDW correlations, albeit
nonsingular, persist to increase in the ab plane, thanks to the
strengthening of Umklapp by Cooper SCd pairing. The in-
crease in the SDW susceptibility can be fitted with a Curie-
Weiss law in temperature.

The above features found for the susceptibility are also
encountered in the antiferromagnetic component of the
nuclear relaxation rate as an anomalous enhancement that
emerges out of a Korringa or Fermi-liquid-like behavior at
low temperature. These characteristics of the nuclear relax-
ation rate adhere to a large extent to the experimental facts
found by NMR in the Bechgaard salts. The relatively rapid
evolution of the relaxation rate enhancement seen under
pressure, in particular concerning the characteristics of the
Curie-Weiss law, can find an explanation in line with the
strong reduction in Tc under pressure. This connection be-
tween theory and experiment gives significant support to a
mechanism of superconductive pairing mediated by spin
fluctuations.

As stressed before, at the core of the weak coupling scal-
ing theory resides the finite quantum interference between
density-wave and Cooper pairing channels. It gives rise to
d-wave superconductivity from the exchange of spin corre-
lations, and conversely to the enhancement of spin correla-
tions from superconductive pairing. This interference is
manifest in the one-loop perturbation theory. Higher order
effects such as the interaction between SDW modes of fluc-
tuations are neglected. In self-consistent renormalized theory
of spin fluctuations where such mode-mode interactions are
included,39 a Curie-Weiss enhancement can be found in the
high-temperature part of the normal phase. In such an ap-
proach, the SDW channel is singled out and interference with
Cooper pairing absent. It follows that CW enhancement does
not persist down to the lowest temperature, where instead a
Fermi-liquid behavior takes place. Despite this fundamental
difference, one cannot exclude that the actual Curie-Weiss
enhancement of the nuclear relaxation rate superimposes to
some extent both contributions.

In conclusion the above results have highlighted that from
a renormalization-group approach to the quasi-one-
dimensional electron-gas model, it is possible to obtain a
microscopic description of the spin fluctuations, as extracted
from nuclear relaxation in �TMTSF�2X. It is through the
same approach that the mechanism of interplay between itin-
erant antiferromagnetism and superconductivity has been
worked out for the phase diagram of these compounds.17,18

In parallel with the work presented here for the relaxation
rate, the same approach has been applied to electron trans-
port in the Bechgaard salts, which also shows an anomalous
temperature dependence in the metallic state above super-
conductivity. Calculations of the transport scattering rate are
compared to the resistivity in a separate paper.40
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APPENDIX: NUCLEAR RELAXATION RATE

1. Antiferromagnetic part

The wave vector and frequency dependence of the dy-
namic susceptibility is in general not given by the RG
method used here. However, an expression for the imaginary

part of the SDW susceptibility can be obtained by restoring
the q and � dependence through the boundary conditions of
the flow equation for the susceptibility Eq. �3�. Using Eq. �4�
at small q and �, one finds

Im SDW�q + q0,�� =
1

�vF
Im��

0

̃SDW
0 �q+q0,��

zSDW
2 �kb��d��

= SDW�q0�Im�1 − �a
2q2 − �b

2qb
2

− �c
2�sin qc�2 + i�� + ¯� . �A1�

This expression will be equated with the expansion of

Im SDW�q + q0,�� 	 Im� SDW�q0�
1 + �a

2q2 + �b
2qb

2 + �c
2�sin qc�2 − i��

� =
SDW�q0���

�1 + �a
2q2 + �b

2qb
2 + �c

2�sin qc�2�2 + �2�2 , �A2�

which we shall use in the following. Here �i
2=�0,i

2 zSDW
2 �kb�� / ̃SDW, is the square of correlation length along i=a, b, and c

directions; �0,i are the corresponding coherence lengths evaluated at the SDW temperature T0	12 K obtained for small t�b� ,
that is

�0,i
2 = − � vi

2�T0
�2

Re��
0

�/2 dkb

2�
���1

2
− i

t�b�

�T0
cos�2kb��� , �A3�

where va=vF /�2 and vb,c= t�b,c. The relaxation time for SDW fluctuations is �=�0zSDW
2 �kb�� / ̃SDW, where �0 is a charac-

teristic short-range time scale at short distance, which is given by

�0 =
1

�T0
Re��

0

�/2 dkb

2�
���1

2
− i

t�b�

�T0
cos�2kb��� . �A4�

Substituting the imaginary part Eq. �A1� in the expression for the antiferromagnetic component of the nuclear relaxation rate,
Eq. �10�, we get in the limit �→0

T1
−1�q � q0� = 8T�Aq0

�2�
0

�0,a
−1 �

0

�0,b
−1 �

0

� Im �q,��
�

dqdqbdqc

= 8��Aq0
�2T�N�EF��2̃SDW�q0�

vF�0

�0,a�0,b
�

0

�r/� �
0

�r/� �
0

� dxdydqc

�1 + x2 + y2 + �c
2�sin qc�2�2

= 2�3�Aq0
�2T�N�EF��2̃SDW�q0�

vF�0

�0,a�0,b
� 1

�1 + �c
2

−
1

��1 + r��1 + r + �c
2�
� . �A5�

Here r=�zSDW
2 �kb�� / ̃SDW and �	1.114 is a constant intro-

duced to adjust the upper bound cutoff in order to go through

a polar integration in the ab plane. This allows an analytical

expression to be found that deviates from the numerical

�rectangular� integration by less than 0.1%.

2. Uniform part

Following Eq. �10�, the uniform component of the relax-
ation rate is given by

T1
−1�q � 0� = T�A0�2�

q�0

Im �q,��
�

d3q

�2��3 . �A6�

Using an RPA expression for the dynamical spin susceptibil-
ity at small q and �, we have for the imaginary part

Im �q,�� =

− �2 2

LN�
�
k

�
p

Im� n�Ep�k + q�� − n�Ep�k��
Ep�k + q� − Ep�k� − � − i0+� ,

�A7�
where �= �1−��−1 is an enhancement factor from interaction
parameterized by ��1. For � and q going to zero, we have
in the low-temperature limit
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Im �q,����,q→0 = − �2 1

4�2�
p
� � dEp

dSE

��Ep�k��
�n�Ep�k�

+ �� − n�Ep�k������ − Ep�k + q�

+ Ep�k��,

= �2 �

4�2�
p
� dSF

��Ep�kF��
��Ep�kF + q�

− Ep�kF�� . �A8�

Only a constant �Fermi� surface integral remains. The substi-
tution in Eq. �A6�, allows one to write

T1
−1�q � 0� =

T

�2��5 �A0�2�2�
p
� d3q� dSF

��Ep�kF��
��Ep�kF

+ q� − Ep�kF�� =
2T

�2��5 �A0�2�2�� dSF

��Ep�kF���2

.

�A9�

Using the approximation ��Ep�kF���vF for t�c� t�b�vF,
and �dSF=4�2, one obtains the Korringa component

T1
−1�q � 0� = ��A0�2�N�EF��2�2T . �A10�
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